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Percolation threshold is not a decreasing function of the average coordination number

John C. Wierman
Mathematical Sciences Department, Johns Hopkins University, Baltimore, Maryland 21218

~Received 27 May 2002; published 21 October 2002!

It is commonly believed that the percolation critical probability is a monotonically decreasing function of the
average coordination number for periodic lattice graphs in the same dimension. This paper provides
counterexamples—a pair of planar lattices for which the bond percolation critical probabilities and average
coordination numbers are in the same order, and a pair for which the site percolation critical probabilities and
average coordination numbers are in the same order. These counterexamples confirm the existence of this
counterintuitive phenomenon, which was observed in one case in numerical estimates by van der Marck.
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I. INTRODUCTION

Since the origins of percolation theory, determining t
value of the critical probabilities of various lattices has be
an important and challenging problem. Exact solutions
known for arbitrary trees@1# and a few periodic two-
dimensional lattices: the bond percolation thresholds for
square@2#, triangular and hexagonal@3#, and bowtie lattice
and its dual@4#, the site percolation threshold for the tria
gular lattice@5#, and various transformations of these so
tions to related graphs, such as the Kagome´ lattice site model
and the (3,122) lattice site model@6#. Rigorous bounds have
been established in the mathematical literature.~See@7–11#,
and references therein.! Considerable work in the physic
community has produced Monte Carlo simulation estima
~see @12# and references therein! and development of ap
proximation formulas~see@13–16#, and references therein!.

A commonly accepted observation is that more rich
connected lattice graphs have lower percolation thresho
One rigorous result of this nature is Fisher’s@17# contain-
ment principle: If G is a subgraph ofH, then pc(G)
>pc(H), for both bond and site models. A result in the sa
spirit is the contraction principle@18#: If H is obtained from
G by contracting edges, thenpc(G)>pc(H) for bond mod-
els. Such results, coupled with substantial numerical e
dence from simulations, have led to a common belief that
critical probability is a monotonically decreasing function
the average coordination number of the lattice for lattices
the same dimension, that is, if two lattices have average
ordination numbers in one order,d(G)<d(H), then the per-
colation thresholds have the opposite order,pc(G)>pc(H).
This belief has been built in to several ‘‘universal’’ approx
mation formulas for critical probabilities in the physics li
erature, where the formulas based on dimension and coo
nation number or average coordination number all imply t
the critical probability is a decreasing function of the avera
coordination number if the dimension is fixed~see, for ex-
ample, Refs.@19–22,13#!.

However, recently van der Marck@23# noted ‘‘one excep-
tion to this rule: the site percolation threshold of the penta
nal lattice~0.6471! is lower than that of the Kagome´ lattice
~0.6527...!, although its average coordination number
lower ~3 1

3 vs 4!.’’ ~Note that in the mathematical literature
1063-651X/2002/66~4!/046125~4!/$20.00 66 0461
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graph theory, the term ‘‘degree’’ is used, rather than ‘‘coo
dination number.’’!

II. RESULTS

This paper proves that critical probabilities and avera
coordination numbers of lattices in the same dimension
have the same order, for both site models and bond mod

Unfortunately, current mathematical bounds are not su
ciently accurate to verify the ordering of the pentagonal l
tice and Kagome´ lattice site percolation thresholds observ
numerically by van der Marck.

For bond percolation, we prove that a modification of t
(3,122) lattice has critical probability between 0.69523 a
0.69825 and average coordination number 33

4, which may be
compared to the hexagonal lattice, with exact percolat
threshold 0.6527... and uniform degree 3. The proof, us
the substitution method@24,25,9–11#, is given in Sec. III.

The site percolation example is based on the bond mo
example. We use the result of Sec. III to show that a pla
subgraph of the line graph of the modification of the (3,122)
lattice has site percolation critical probability greater th
0.69523, while its average degree is 5. This contrasts w
the Kagome´ lattice, which has percolation threshold equal
0.6527... and average degree 4. The lower bound for
critical probability of the first graph is obtained by eleme
tary reasoning involving the bond-to-site transformation a
the containment principle. The proofs are given in Sec. I

III. BOND MODEL EXAMPLE

The exact value of the bond percolation critical probab
ity for the hexagonal lattice, 122 sin(p/18)50.6527..., was
conjectured by Sykes and Essam@26# and proved by Wier-
man@3#. We will compare the hexagonal lattice with a mod
fication of the (3,122) lattice, denotedL, in which we add a
central vertex in each triangle, connected by an edge to e
vertex of the triangle, which corresponds to replacing
triangle by aK4 ~complete graph on 4 vertices!. See Figs. 1
and 2.

The latticeL contains the (3,122) lattice, which satisfies

0.7385<pc„~3,122! bond…<0.7449,
©2002 The American Physical Society25-1
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so it has a lower critical probability. The purpose of addi
the central vertices and edges is to increase the averag
gree, while lowering the critical probability relatively little
keeping it above that of the hexagonal lattice.

We apply the substitution method to compute accur
bounds for the bond percolation critical probability ofL. To
apply the substitution method, we decompose the (3,12)
lattice into isomorphic edge-disjoint subgraphs, and sub
tute alternative subgraphs in order to obtain another lat
~which, in this case, is exactly solved!. To facilitate this, we
first subdivide each edge which connects two triangles in
(3,122) lattice, i.e., replace it by two ‘‘half-edges’’ in series
The vertices inserted between the half-edges are ca
boundary vertices. To maintain equivalence with the bon
percolation model with parameterp, each of the half-edges i
open with probabilityAp. The lattice may then be decom
posed into isomorphic subgraphs, each consisting of aK4
with three incident half-edges. Substituting three-stars
these subgraphs produces a subdivided hexagonal lattice
Fig. 3.

Consider subgraphs in the decompositions ofL and the
hexagonal lattice, with the boundary vertices of both labe
A, B, andC. To compare probabilities of open connections
the two subgraphs, we compute probabilities of partitions
the boundary vertices. A partition is denoted by a seque
of vertices and vertical bars, where vertices not separate
a vertical bar are in the same cluster.

The bond percolation model on each lattice assign
probability to each configuration on the corresponding s

FIG. 1. An induced subgraph of the (3,122) lattice.
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graph. We denote the probability measure correspondin
the bond percolation model onL by Pp(•), and the probabil-
ity measure corresponding to the hexagonal lattice b
model byQq(•). A probability is determined for each part
tion p by summing the probabilities of all configuration
which produce the partitionp.

The set of partitions, ordered by refinement, form a p
tially ordered set:a is a refinement ofb if every cluster ofa
is contained in a cluster ofb. ABC is the maximum elemen
andAuBuC is the minimum element, and, for example,ABuC
is a refinement ofABC. An upsetU is a set of partitions such
that if a is a refinement ofb and aPU then bPU. The
probability of an upset is the sum of the probabilities of t
partitions in the upset.

We now calculate the partition probability measures c
responding to the two bond percolation models.

To calculate the probability of the maximum partitio
ABC, notice that all half-edges must be open, and then
compose the event according to the number of edges in
original triangle that are open, to obtain

Pp~ABC!5p3/2$p313p2~12p!13p2~12p!2

3@p212p~12p!#1p3~12p!3%

53p7/215p9/2218p11/2115p13/224p15/2.

A similar ~somewhat more complicated! decomposition
into cases and simplification yields

FIG. 2. An induced subgraph of the latticeL.
Pp~ABuC!5Pp~ACuB!5Pp~BCuA!5p22p5/212p31p7/215p9/227p5211p11/217p618p13/222p722p15/2.
he
ted

s

To calculatePp(AuBuC), decompose the event accordin
to the number of half-edges that are open, to obtain

Pp5~AuBuC!

5p3/2@3p~12p!51~12p!6#13p~12p1/2!

3@2p~12p!3~112p22p2!

13p~12p!51~12p!6#13p1/2~12p1/2!21~12p1/2!3

5123p226p316p7/2110p9/2121p5236p11/2

221p6130p13/216p728p15/2.
We compare this distribution with that determined by t
bond model on the subdivided hexagonal lattice, deno
Qq :

Qq~ABC!5q3,

Qq~ABuC!5Qq~ACuB!5Qq~BCuA!5q2~12q!,

Qq~AuBuC!5~12q!313q~12q!2.

The probability measuresPp and Qq are compared by
stochastic ordering: IfP andQ are two probability measure
on the same partially ordered setS, thenP is stochastically
5-2
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smaller thanQ, denotedP<stQ, if P@U#<Q@U# for every
upsetU of S. The set of probability measures onS are par-
tially ordered by stochastic ordering.

Set q equal to the critical probability of the subdivide
hexagonal lattice, i.e.,

q05A122 sin~p/18!50.8079... .

By standard arguments relating coupling and stochastic
dering, if Pp<stQq0

, then p is less than or equal to th

critical probability of L, and if Pp>stQq0
then p is greater

than or equal to the critical probability ofL. Thus, our lower
and upper bounds are the maximum value ofp for which
Pp@U#<Qq0

@U# for all nontrivial upsetsU, and the mini-

mum value ofp for which Pp@U#>Qq0
@U# for all nontrivial

upsetsU, respectively. Equivalently, the lower and upp
bounds are the smallest and largest~respectively! solutions
for p of the equations

Pp@U#5Qq0
@U#

for nontrivial upsetsU.
The nontrivial upsets consist of the partitionABC and 0,

1, 2, or 3 of the partitionsABuC, ACuB, andBCuA. Thus,
there are only four different upset equations, with the for

Pp~ABC!1 iPp~ABuC!5Qq0
~ABC!1 iQq0

~ABuC!,

for i 50, 1, 2, 3.
Using the bounds

0.807900764<A122 sin~p/18!<0.807900765,

FIG. 3. The substitution used in deriving the bound for the bo
percolation critical probability ofL. L is decomposed into copies o
the subgraph shown on the left, while the subdivided hexago
lattice is decomposed into copies of the subgraph shown on
right. The boundary vertices are labeledA, B, andC.

FIG. 4. An induced subgraph of the line graph ofL.
04612
r-

we obtain the following bounds for the solutions of the up
equations, withsi , i 50, 1, 2, 3, denoting the solutions:

0.69523<s0<0.69524,

0.69582<s1<0.69583,

0.69671<s2<0.69672,

0.69824<s3<0.69825.

Thus, taking the lower bound fors0 and the upper bound fo
s3 , we obtain

0.69523<pc~L1!<0.69825.

IV. SITE MODEL EXAMPLE

We first note that the latticeL and the hexagonal lattice
are a pair of graphs with site percolation critical probabiliti
and average degrees in the same order: Wierman@10#
showed that the site percolation critical probability of t
hexagonal lattice is less than 0.79472.L has site percolation
threshold equal to that of the (3,122) lattice, because the
vertex at the center of each triangle of the (3,122) lattice is
not essential to the creation of an infinite open cluster, i.e
there is an infinite open cluster, there is an infinite op
cluster using only the vertices of the (3,122) lattice. Thus the
addition of the central vertices in the triangles merely ser
to raise the average degree, without contributing to perc
tive behavior. For this reason, this example is unsatisfyi
and we provide a more substantive example.

The bond-to-site transformation converts the bond per
lation model on a graphG into an equivalent site percolatio
model on a different graphG* , called theline graph~in the
mathematical literature! or thecovering graph~in the phys-
ics literature!. Applying the bond-to-site transformation t
the graphs in Sec. III, we obtain the Kagome´ lattice as the
line graph of the hexagonal lattice, and the graph shown
Fig. 4 as the line graph ofL. By the equivalence, the Kagom´
lattice site percolation critical probability is 0.6527... and t
site percolation critical probability of the line graph ofL is
greater than 0.69523. Since the Kagome´ lattice has uniform
degree 4 and the line graph ofL has average degree equal
5.6 ~since 60% of the vertices have degree 6, while 40
have degree 5!, the site percolation critical probabilities an
average degrees are in the same order.

Note that the line graph ofL is not planar, however, sinc
there are three pairs of crossing edges in each subgraph

d

al
he

FIG. 5. A planar subgraph of the line graph ofL.
5-3
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responding to the substitution region in Fig. 3. For an
ample involving only planar graphs, delete the three cross
edges that form a triangle~see Fig. 5!. The resulting graph
has site percolation critical probability larger than that of t
line graph ofL ~by the containment principle!, so it is larger
than that of the Kagome´ lattice. Its average degree is 4
~40% of vertices have degree 4, 40% have 5, and 20% h
6!, which is also larger than that of the Kagome´ lattice.

V. CONCLUDING REMARKS

For more than four decades, intuition has suggested
more richly connected lattices have lower percolation thre
olds. One specific interpretation of this statement is that
percolation threshold is a decreasing function of the aver
coordination number. However, while the statement is true
most cases, this paper shows that it is not always true. T
s

m
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some refinement of the~usually correct! intuition is called
for.

Toward this end, one may view the counterexample as
indication that variability in bond density may increase t
percolation threshold. In the counterexample, one lattice
relatively uniform density, while the other has regions
high density linked across sparse regions. The sparse reg
may act as bottlenecks which tend to impede the forma
of large clusters, while the dense regions increase the a
age coordination number without greatly affecting connec
ity.
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